Complex forests

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CARAF: Complex Aggregates within Random Forests

This paper presents an approach integrating complex aggregate features into a relational random forest learner to address relational data mining tasks. CARAF, for Complex Aggregates within RAndom Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration of the large feature space induced by the use of complex aggregates. Its second purpose is to reduce the overfitting introduc...

متن کامل

Viewing forests through the lens of complex systems science

Complex systems science provides a transdisciplinary framework to study systems characterized by (1) heterogeneity, (2) hierarchy, (3) self-organization, (4) openness, (5) adaptation, (6) memory, (7) non-linearity, and (8) uncertainty. Complex systems thinking has inspired both theory and applied strategies for improving ecosystem resilience and adaptability, but applications in forest ecology ...

متن کامل

Mondrian Forests: Efficient Online Random Forests

Ensembles of randomized decision trees, usually referred to as random forests, are widely used for classification and regression tasks in machine learning and statistics. Random forests achieve competitive predictive performance and are computationally efficient to train and test, making them excellent candidates for real-world prediction tasks. The most popular random forest variants (such as ...

متن کامل

Modeling the Degradation of Hyrcanian Forests Using Logestic Regression Method (Case Study: Shenrood Forests, Guilan)

Having accurate quantitative and qualitative information about the state of forest stands, is necessary for any basic management and planning, to reduce the effects of forest degradation. The current study aimed to model the destruction of Hyrcanian forests under the effects of density and volume (per hectare) variables, using logistic regression. In total, 252 plots of 1000 m2 area were measur...

متن کامل

Randomer Forests

Random forests (RF) is a popular general purpose classifier that has been shown to outperform many other classifiers on a variety of datasets. The widespread use of random forests can be attributed to several factors, some of which include its excellent empirical performance, scale and unit invariance, robustness to outliers, time and space complexity, and interpretability. While RF has many de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1986

ISSN: 0028-0836,1476-4687

DOI: 10.1038/320391b0