منابع مشابه
CARAF: Complex Aggregates within Random Forests
This paper presents an approach integrating complex aggregate features into a relational random forest learner to address relational data mining tasks. CARAF, for Complex Aggregates within RAndom Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration of the large feature space induced by the use of complex aggregates. Its second purpose is to reduce the overfitting introduc...
متن کاملViewing forests through the lens of complex systems science
Complex systems science provides a transdisciplinary framework to study systems characterized by (1) heterogeneity, (2) hierarchy, (3) self-organization, (4) openness, (5) adaptation, (6) memory, (7) non-linearity, and (8) uncertainty. Complex systems thinking has inspired both theory and applied strategies for improving ecosystem resilience and adaptability, but applications in forest ecology ...
متن کاملMondrian Forests: Efficient Online Random Forests
Ensembles of randomized decision trees, usually referred to as random forests, are widely used for classification and regression tasks in machine learning and statistics. Random forests achieve competitive predictive performance and are computationally efficient to train and test, making them excellent candidates for real-world prediction tasks. The most popular random forest variants (such as ...
متن کاملModeling the Degradation of Hyrcanian Forests Using Logestic Regression Method (Case Study: Shenrood Forests, Guilan)
Having accurate quantitative and qualitative information about the state of forest stands, is necessary for any basic management and planning, to reduce the effects of forest degradation. The current study aimed to model the destruction of Hyrcanian forests under the effects of density and volume (per hectare) variables, using logistic regression. In total, 252 plots of 1000 m2 area were measur...
متن کاملRandomer Forests
Random forests (RF) is a popular general purpose classifier that has been shown to outperform many other classifiers on a variety of datasets. The widespread use of random forests can be attributed to several factors, some of which include its excellent empirical performance, scale and unit invariance, robustness to outliers, time and space complexity, and interpretability. While RF has many de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1986
ISSN: 0028-0836,1476-4687
DOI: 10.1038/320391b0